Wednesday, October 15, 2008

The Paper Box

It may be interesting to introduce here, though it is not strictly a puzzle, an ingenious method for making a paper box.
Take a square of stout paper and by successive foldings make all the creases indicated by the dotted lines in the illustration. Then cut away the eight little triangular pieces that are shaded, and cut through the paper along the dark lines. The second illustration shows the box half folded up, and the reader will have no difficulty in effecting its completion. Before folding up, the reader might cut out the circular piece indicated in the diagram, for a purpose I will now explain.



This box will be found to serve excellently for the production of vortex rings. These rings, which were discussed by Von Helmholtz in 1858, are most interesting, and the box (with the hole cut out) will produce them to perfection. Fill the box with tobacco smoke by blowing it gently through the hole. Now, if you hold it horizontally, and softly tap the side that is opposite to the hole, an immense number of perfect rings can be produced from one mouthful of smoke. It is best that there should be no currents of air in the room. People often do not realise that these rings are formed in the air when no smoke is used. The smoke only makes them visible. Now, one of these rings, if properly directed on its course, will travel across the room and put out the flame of a candle, and this feat is much more striking if you can manage to do it without the smoke. Of course, with a little practice, the rings may be blown from the mouth, but the box produces them in much greater perfection, and no skill whatever is required. Lord Kelvin propounded the theory that matter may consist of vortex rings in a fluid that fills all space, and by a development of the hypothesis he was able to explain chemical combination.

Solution

Tuesday, October 14, 2008

A Cutting-Out Puzzle

Here is a little cutting-out poser. I take a strip of paper, measuring five inches by one inch, and, by cutting it into five pieces, the parts fit together and form a square, as shown in the illustration. Now, it is quite an interesting puzzle to discover how we can do this in only four pieces.

Solution

Monday, October 13, 2008

Two Crosses from One

Cut a Greek cross into five pieces that will form two such crosses, both of the same size. The solution of this puzzle is very beautiful.

Solution

Sunday, October 12, 2008

The Five Brigands

The five Spanish brigands, Alfonso, Benito, Carlos, Diego, and Esteban, were counting their spoils after a raid, when it was found that they had captured altogether exactly 200 doubloons. One of the band pointed out that if Alfonso had twelve times as much, Benito three times as much, Carlos the same amount, Diego half as much, and Esteban one-third as much, they would still have altogether just 200 doubloons. How many doubloons had each?

There are a good many equally correct answers to this question. Here is one of them:
A 6 × 12 = 72
B 12 × 3 = 36
C 17 × 1 = 17
D 120 × ½ = 60
E 45 × 1/3 = 15

200 200

The puzzle is to discover exactly how many different answers there are, it being understood that every man had something and that there is to be no fractional money—only doubloons in every case.

This problem, worded somewhat differently, was propounded by Tartaglia (died 1559), and he flattered himself that he had found one solution; but a French mathematician of note (M.A. Labosne), in a recent work, says that his readers will be astonished when he assures them that there are 6,639 different correct answers to the question. Is this so? How many answers are there?

Solution

Saturday, October 11, 2008

A Legal Difficulty

"A client of mine," said a lawyer, "was on the point of death when his wife was about to present him with a child. I drew up his will, in which he settled two-thirds of his estate upon his son (if it should happen to be a boy) and one-third on the mother. But if the child should be a girl, then two-thirds of the estate should go to the mother and one-third to the daughter. As a matter of fact, after his death twins were born—a boy and a girl. A very nice point then arose. How was the estate to be equitably divided among the three in the closest possible accordance with the spirit of the dead man's will?"

Solution

Friday, October 10, 2008

The Torn Number


I had the other day in my possession a label bearing the number 3 0 2 5 in large figures. This got accidentally torn in half, so that 3 0 was on one piece and 2 5 on the other, as shown on the illustration. On looking at these pieces I began to make a calculation, scarcely conscious of what I was doing, when I discovered this little peculiarity. If we add the 3 and the 2 5 together and square the sum we get as the result the complete original number on the label! Thus, 30 added to 25 is 55, and 55 multiplied by 55 is 3025. Curious, is it not? Now, the puzzle is to find another number, composed of four figures, all different, which may be divided in the middle and produce the same result.

Thursday, October 9, 2008

Painting the Lamp-Posts

Tim Murphy and Pat Donovan were engaged by the local authorities to paint the lamp-posts in a certain street. Tim, who was an early riser, arrived first on the job, and had painted three on the south side when Pat turned up and pointed out that Tim's contract was for the north side. So Tim started afresh on the north side and Pat continued on the south. When Pat had finished his side he went across the street and painted six posts for Tim, and then the job was finished. As there was an equal number of lamp-posts on each side of the street, the simple question is: Which man painted the more lamp-posts, and just how many more?

Solution

Wednesday, October 8, 2008

The Mystic Eleven

Can you find the largest possible number containing any nine of the ten digits (calling nought a digit) that can be divided by 11 without a remainder? Can you also find the smallest possible number produced in the same way that is divisible by 11? Here is an example, where the digit 5 has been omitted: 896743012. This number contains nine of the digits and is divisible by 11, but it is neither the largest nor the smallest number that will work.

Solution

Tuesday, October 7, 2008

Digital Multiplication

Here is another entertaining problem with the nine digits, the nought being excluded. Using each figure once, and only once, we can form two multiplication sums that have the same product, and this may be done in many ways. For example, 7x658 and 14x329 contain all the digits once, and the product in each case is the same—4,606. Now, it will be seen that the sum of the digits in the product is 16, which is neither the highest nor the lowest sum so obtainable. Can you find the solution of the problem that gives the lowest possible sum of digits in the common product? Also that which gives the highest possible sum?

Solution

Monday, October 6, 2008

Donkey Riding

During a visit to the seaside Tommy and Evangeline insisted on having a donkey race over the mile course on the sands. Mr. Dobson and some of his friends whom he had met on the beach acted as judges, but, as the donkeys were familiar acquaintances and declined to part company the whole way, a dead heat was unavoidable. However, the judges, being stationed at different points on the course, which was marked off in quarter-miles, noted the following results:—The first three-quarters were run in six and three-quarter minutes, the first half-mile took the same time as the second half, and the third quarter was run in exactly the same time as the last quarter. From these results Mr. Dobson amused himself in discovering just how long it took those two donkeys to run the whole mile. Can you give the answer?

Solution

Sunday, October 5, 2008

The Stop-Watch


We have here a stop-watch with three hands. The second hand, which travels once round the face in a minute, is the one with the little ring at its end near the centre. Our dial indicates the exact time when its owner stopped the watch. You will notice that the three hands are nearly equidistant. The hour and minute hands point to spots that are exactly a third of the circumference apart, but the second hand is a little too advanced. An exact equidistance for the three hands is not possible. Now, we want to know what the time will be when the three hands are next at exactly the same distances as shown from one another. Can you state the time?

Solution

Saturday, October 4, 2008

Heard on the Tube Railway

First Lady: "And was he related to you, dear?"
Second Lady: "Oh, yes. You see, that gentleman's mother was my mother's mother-in-law, but he is not on speaking terms with my papa."
First Lady: "Oh, indeed!" (But you could see that she was not much wiser.)
How was the gentleman related to the Second Lady?

Solution

Friday, October 3, 2008

Mrs. Timpkins's Age

Edwin: "Do you know, when the Timpkinses married eighteen years ago Timpkins was three times as old as his wife, and to-day he is just twice as old as she?"
Angelina: "Then how old was Mrs. Timpkins on the wedding day?"
Can you answer Angelina's question?

Solution

Thursday, October 2, 2008

A Puzzle in Reversals

Most people know that if you take any sum of money in pounds, shillings, and pence, in which the number of pounds (less than £12) exceeds that of the pence, reverse it (calling the pounds pence and the pence pounds), find the difference, then reverse and add this difference, the result is always £12, 18s. 11d. But if we omit the condition, "less than £12," and allow nought to represent shillings or pence—(1) What is the lowest amount to which the rule will not apply? (2) What is the highest amount to which it will apply? Of course, when reversing such a sum as £14, 15s. 3d. it may be written £3, 16s. 2d., which is the same as £3, 15s. 14d.

Solution

Wednesday, October 1, 2008

The Christmas-Boxes

Some years ago a man told me he had spent one hundred English silver coins in Christmas-boxes, giving every person the same amount, and it cost him exactly £1, 10s. 1d. Can you tell just how many persons received the present, and how he could have managed the distribution? That odd penny looks queer, but it is all right.

Solution

Tuesday, September 30, 2008

A New Money puzzle

The largest sum of money that can be written in pounds, shillings, pence, and farthings, using each of the nine digits once and only once, is £98,765, 4s. 3½d. Now, try to discover the smallest sum of money that can be written down under precisely the same conditions. There must be some value given for each denomination—pounds, shillings, pence, and farthings—and the nought may not be used. It requires just a little judgment and thought.

Solution

Monday, September 29, 2008

At a Cattle Market

Three countrymen met at a cattle market. "Look here," said Hodge to Jakes, "I'll give you six of my pigs for one of your horses, and then you'll have twice as many animals here as I've got." "If that's your way of doing business," said Durrant to Hodge, "I'll give you fourteen of my sheep for a horse, and then you'll have three times as many animals as I." "Well, I'll go better than that," said Jakes to Durrant; "I'll give you four cows for a horse, and then you'll have six times as many animals as I've got here."
No doubt this was a very primitive way of bartering animals, but it is an interesting little puzzle to discover just how many animals Jakes, Hodge, and Durrant must have taken to the cattle market.

Solution

Sunday, September 28, 2008

The Gardener and the Cook

A correspondent, signing himself "Simple Simon," suggested that I should give a special catch puzzle in the issue of The Weekly Dispatch for All Fools' Day, 1900. So I gave the following, and it caused considerable amusement; for out of a very large body of competitors, many quite expert, not a single person solved it, though it ran for nearly a month.


"The illustration is a fancy sketch of my correspondent, 'Simple Simon,' in the act of trying to solve the following innocent little arithmetical puzzle. A race between a man and a woman that I happened to witness one All Fools' Day has fixed itself indelibly on my memory. It happened at a country-house, where the gardener and the cook decided to run a race to a point 100 feet straight away and return. I found that the gardener ran 3 feet at every bound and the cook only 2 feet, but then she made three bounds to his two. Now, what was the result of the race?"
A fortnight after publication I added the following note: "It has been suggested that perhaps there is a catch in the 'return,' but there is not. The race is to a point 100 feet away and home again—that is, a distance of 200 feet. One correspondent asks whether they take exactly the same time in turning, to which I reply that they do. Another seems to suspect that it is really a conundrum, and that the answer is that 'the result of the race was a (matrimonial) tie.' But I had no such intention. The puzzle is an arithmetical one, as it purports to be."

Solution

Saturday, September 27, 2008

Such a Getting Upstairs

In a suburban villa there is a small staircase with eight steps, not counting the landing. The little puzzle with which Tommy Smart perplexed his family is this. You are required to start from the bottom and land twice on the floor above (stopping there at the finish), having returned once to the ground floor. But you must be careful to use every tread the same number of times. In how few steps can you make the ascent? It seems a very simple matter, but it is more than likely that at your first attempt you will make a great many more steps than are necessary. Of course you must not go more than one riser at a time.
Tommy knows the trick, and has shown it to his father, who professes to have a contempt for such things; but when the children are in bed the pater will often take friends out into the hall and enjoy a good laugh at their bewilderment. And yet it is all so very simple when you know how it is done.

Solution

Friday, September 26, 2008

Magic Squares of Two Degree

While reading a French mathematical work I happened to come across, the following statement: "A very remarkable magic square of 8, in two degrees, has been constructed by M. Pfeffermann. In other words, he has managed to dispose the sixty-four first numbers on the squares of a chessboard in such a way that the sum of the numbers in every line, every column, and in each of the two diagonals, shall be the same; and more, that if one substitutes for all the numbers their squares, the square still remains magic." I at once set to work to solve this problem, and, although it proved a very hard nut, one was rewarded by the discovery of some curious and beautiful laws that govern it. The reader may like to try his hand at the puzzle.

Solution

Thursday, September 25, 2008

The Cigar Puzzle

I once propounded the following puzzle in a London club, and for a considerable period it absorbed the attention of the members. They could make nothing of it, and considered it quite impossible of solution. And yet, as I shall show, the answer is remarkably simple.

Two men are seated at a square-topped table. One places an ordinary cigar (flat at one end, pointed at the other) on the table, then the other does the same, and so on alternately, a condition being that no cigar shall touch another. Which player should succeed in placing the last cigar, assuming that they each will play in the best possible manner? The size of the table top and the size of the cigar are not given, but in order to exclude the ridiculous answer that the table might be so diminutive as only to take one cigar, we will say that the table must not be less than 2 feet square and the cigar not more than 4½ inches long. With those restrictions you may take any dimensions you like. Of course we assume that all the cigars are exactly alike in every respect. Should the first player, or the second player, win?

Solution

Wednesday, September 24, 2008

Slow Cricket

In the recent county match between Wessex and Nincomshire the former team were at the wickets all day, the last man being put out a few minutes before the time for drawing stumps. The play was so slow that most of the spectators were fast asleep, and, on being awakened by one of the officials clearing the ground, we learnt that two men had been put out leg-before-wicket for a combined score of 19 runs; four men were caught for a combined score or 17 runs; one man was run out for a duck's egg; and the others were all bowled for 3 runs each. There were no extras. We were not told which of the men was the captain, but he made exactly 15 more than the average of his team. What was the captain's score?

Solution

Tuesday, September 23, 2008

Dominoes in Progression


It will be seen that I have played six dominoes, in the illustration, in accordance with the ordinary rules of the game, 4 against 4, 1 against 1, and so on, and yet the sum of the spots on the successive dominoes, 4, 5, 6, 7, 8, 9, are in arithmetical progression; that is, the numbers taken in order have a common difference of 1. In how many different ways may we play six dominoes, from an ordinary box of twenty-eight, so that the numbers on them may lie in arithmetical progression? We must always play from left to right, and numbers in decreasing arithmetical progression (such as 9, 8, 7, 6, 5, 4) are not admissible.

Monday, September 22, 2008

The Six Pawns

In how many different ways may I place six pawns on the chessboard so that there shall be an even number of unoccupied squares in every row and every column? We are not here considering the diagonals at all, and every different six squares occupied makes a different solution, so we have not to exclude reversals or reflections.

Solution

Sunday, September 21, 2008

The Keg of Wine

Here is a curious little problem. A man had a ten-gallon keg full of wine and a jug. One day he drew off a jugful of wine and filled up the keg with water. Later on, when the wine and water had got thoroughly mixed, he drew off another jugful and again filled up the keg with water. It was then found that the keg contained equal proportions of wine and water. Can you find from these facts the capacity of the jug?

Solution

Saturday, September 20, 2008

The Rookery


The White rooks cannot move outside the little square in which they are enclosed except on the final move, in giving checkmate. The puzzle is how to checkmate Black in the fewest possible moves with No. 8 rook, the other rooks being left in numerical order round the sides of their square with the break between 1 and 7.

Friday, September 19, 2008

The Board in Compartments


We cannot divide the ordinary chessboard into four equal square compartments, and describe a complete tour, or even path, in each compartment. But we may divide it into four compartments, as in the illustration, two containing each twenty squares, and the other two each twelve squares, and so obtain an interesting puzzle. You are asked to describe a complete re-entrant tour on this board, starting where you like, but visiting every square in each successive compartment before passing into another one, and making the final leap back to the square from which the knight set out. It is not difficult, but will be found very entertaining and not uninstructive.
Whether a re-entrant "tour" or a complete knight's "path" is possible or not on a rectangular board of given dimensions depends not only on its dimensions, but also on its shape. A tour is obviously not possible on a board containing an odd number of cells, such as 5 by 5 or 7 by 7, for this reason: Every successive leap of the knight must be from a white square to a black and a black to a white alternately. But if there be an odd number of cells or squares there must be one more square of one colour than of the other, therefore the path must begin from a square of the colour that is in excess, and end on a similar colour, and as a knight's move from one colour to a similar colour is impossible the path cannot be re-entrant. But a perfect tour may be made on a rectangular board of any dimensions provided the number of squares be even, and that the number of squares on one side be not less than 6 and on the other not less than 5. In other words, the smallest rectangular board on which a re-entrant tour is possible is one that is 6 by 5.
A complete knight's path (not re-entrant) over all the squares of a board is never possible if there be only two squares on one side; nor is it possible on a square board of smaller dimensions than 5 by 5. So that on a board 4 by 4 we can neither describe a knight's tour nor a complete knight's path; we must leave one square unvisited. Yet on a board 4 by 3 (containing four squares fewer) a complete path may be described in sixteen different ways. It may interest the reader to discover all these. Every path that starts from and ends at different squares is here counted as a different solution, and even reverse routes are called different.

Thursday, September 18, 2008

Lion-Hunting


My friend Captain Potham Hall, the renowned hunter of big game, says there is nothing more exhilarating than a brush with a herd—a pack—a team—a flock—a swarm (it has taken me a full quarter of an hour to recall the right word, but I have it at last)—a pride of lions. Why a number of lions are called a "pride," a number of whales a "school," and a number of foxes a "skulk" are mysteries of philology into which I will not enter.
Well, the captain says that if a spirited lion crosses your path in the desert it becomes lively, for the lion has generally been looking for the man just as much as the man has sought the king of the forest. And yet when they meet they always quarrel and fight it out. A little contemplation of this unfortunate and long-standing feud between two estimable families has led me to figure out a few calculations as to the probability of the man and the lion crossing one another's path in the jungle. In all these cases one has to start on certain more or less arbitrary assumptions. That is why in the above illustration I have thought it necessary to represent the paths in the desert with such rigid regularity. Though the captain assures me that the tracks of the lions usually run much in this way, I have doubts.
The puzzle is simply to find out in how many different ways the man and the lion may be placed on two different spots that are not on the same path. By "paths" it must be understood that I only refer to the ruled lines. Thus, with the exception of the four corner spots, each combatant is always on two paths and no more. It will be seen that there is a lot of scope for evading one another in the desert, which is just what one has always understood.

Solution

Wednesday, September 17, 2008

The Queen's Tour



The puzzle of making a complete tour of the chessboard with the queen in the fewest possible moves (in which squares may be visited more than once) was first given by the late Sam Loyd in his Chess Strategy. But the solution shown below is the one he gave in American Chess-Nuts in 1868. I have recorded at least six different solutions in the minimum number of moves—fourteen—but this one is the best of all, for reasons I will explain.




If you will look at the lettered square you will understand that there are only ten really differently placed squares on a chessboard—those enclosed by a dark line—all the others are mere reversals or reflections. For example, every A is a corner square, and every J a central square. Consequently, as the solution shown has a turning-point at the enclosed D square, we can obtain a solution starting from and ending at any square marked D—by just turning the board about. Now, this scheme will give you a tour starting from any A, B, C, D, E, F, or H, while no other route that I know can be adapted to more than five different starting-points. There is no Queen's Tour in fourteen moves (remember a tour must be re-entrant) that may start from a G, I, or J. But we can have a non-re-entrant path over the whole board in fourteen moves, starting from any given square. Hence the following puzzle:—


Start from the J in the enclosed part of the lettered diagram and visit every square of the board in fourteen moves, ending wherever you like.

Solution

Tuesday, September 16, 2008

The Gentle Art of Stamp - Licking

The Insurance Act is a most prolific source of entertaining puzzles, particularly entertaining if you happen to be among the exempt. One's initiation into the gentle art of stamp-licking suggests the following little poser: If you have a card divided into sixteen spaces (4 × 4), and are provided with plenty of stamps of the values 1d., 2d., 3d., 4d., and 5d., what is the greatest value that you can stick on the card if the Chancellor of the Exchequer forbids you to place any stamp in a straight line (that is, horizontally, vertically, or diagonally) with another stamp of similar value? Of course, only one stamp can be affixed in a space. The reader will probably find, when he sees the solution, that, like the stamps themselves, he is licked. He will most likely be twopence short of the maximum. A friend asked the Post Office how it was to be done; but they sent him to the Customs and Excise officer, who sent him to the Insurance Commissioners, who sent him to an approved society, who profanely sent him—but no matter.

Solution

Monday, September 15, 2008

Bishops - Unguarded

Now, how many bishops are necessary in order that every square shall be either occupied or attacked, and every bishop guarded by another bishop? And how may they be placed?

Solution

Sunday, September 14, 2008

Chequered Board Divisions

I recently asked myself the question: In how many different ways may a chessboard be divided into two parts of the same size and shape by cuts along the lines dividing the squares? The problem soon proved to be both fascinating and bristling with difficulties. I present it in a simplified form, taking a board of smaller dimensions.


It is obvious that a board of four squares can only be so divided in one way—by a straight cut down the centre—because we shall not count reversals and reflections as different. In the case of a board of sixteen squares—four by four—there are just six different ways. I have given all these in the diagram, and the reader will not find any others. Now, take the larger board of thirty-six squares, and try to discover in how many ways it may be cut into two parts of the same size and shape.

Saturday, September 13, 2008

A Dormitory Puzzle

In a certain convent there were eight large dormitories on one floor, approached by a spiral staircase in the centre, as shown in our plan. On an inspection one Monday by the abbess it was found that the south aspect was so much preferred that six times as many nuns slept on the south side as on each of the other three sides. She objected to this overcrowding, and ordered that it should be reduced. On Tuesday she found that five times as many slept on the south side as on each of the other sides. Again she complained. On Wednesday she found four times as many on the south side, on Thursday three times as many, and on Friday twice as many. Urging the nuns to further efforts, she was pleased to find on Saturday that an equal number slept on each of the four sides of the house. What is the smallest number of nuns there could have been, and how might they have arranged themselves on each of the six nights? No room may ever be unoccupied.



Solution

Friday, September 12, 2008

The Peal of Bells

A correspondent, who is apparently much interested in campanology, asks me how he is to construct what he calls a "true and correct" peal for four bells. He says that every possible permutation of the four bells must be rung once, and once only. He adds that no bell must move more than one place at a time, that no bell must make more than two successive strokes in either the first or the last place, and that the last change must be able to pass into the first. These fantastic conditions will be found to be observed in the little peal for three bells, as follows:—

1 2 3
2 1 3
2 3 1
3 2 1
3 1 2
1 3 2

How are we to give him a correct solution for his four bells?

Thursday, September 11, 2008

The Voters' Puzzle




Here we have, perhaps, the most interesting form of the puzzle. In how many different ways can you read the political injunction, "RISE TO VOTE, SIR," under the same conditions as before? In this case every reading of the palindrome requires the use of the central V as the middle letter.

Wednesday, September 10, 2008

The Cyclists' Tour

Two cyclists were consulting a road map in preparation for a little tour together. The circles represent towns, and all the good roads are represented by lines. They are starting from the town with a star, and must complete their tour at E. But before arriving there they want to visit every other town once, and only once. That is the difficulty. Mr. Spicer said, "I am certain we can find a way of doing it;" but Mr. Maggs replied, "No way, I'm sure." Now, which of them was correct? Take your pencil and see if you can find any way of doing it. Of course you must keep to the roads indicated.



Solution

Tuesday, September 9, 2008

Arranging the Jampots

I happened to see a little girl sorting out some jam in a cupboard for her mother. She was putting each different kind of preserve apart on the shelves. I noticed that she took a pot of damson in one hand and a pot of gooseberry in the other and made them change places; then she changed a strawberry with a raspberry, and so on. It was interesting to observe what a lot of unnecessary trouble she gave herself by making more interchanges than there was any need for, and I thought it would work into a good puzzle.







It will be seen in the illustration that little Dorothy has to manipulate twenty-four large jampots in as many pigeon-holes. She wants to get them in correct numerical order—that is, 1, 2, 3, 4, 5, 6 on the top shelf, 7, 8, 9, 10, 11, 12 on the next shelf, and so on. Now, if she always takes one pot in the right hand and another in the left and makes them change places, how many of these interchanges will be necessary to get all the jampots in proper order? She would naturally first change the 1 and the 3, then the 2 and the 3, when she would have the first three pots in their places. How would you advise her to go on then? Place some numbered counters on a sheet of paper divided into squares for the pigeon-holes, and you will find it an amusing puzzle.

Solution

Monday, September 8, 2008

The Ten Apples




The family represented in the illustration are amusing themselves with this little puzzle, which is not very difficult but quite interesting. They have, it will be seen, placed sixteen plates on the table in the form of a square, and put an apple in each of ten plates. They want to find a way of removing all the apples except one by jumping over one at a time to the next vacant square, as in draughts; or, better, as in solitaire, for you are not allowed to make any diagonal moves—only moves parallel to the sides of the square. It is obvious that as the apples stand no move can be made, but you are permitted to transfer any single apple you like to a vacant plate before starting. Then the moves must be all leaps, taking off the apples leaped over.

Solution

Sunday, September 7, 2008

The Victoria Cross Puzzle




The puzzle-maker is peculiarly a "snapper-up of unconsidered trifles," and his productions are often built up with the slenderest materials. Trivialities that might entirely escape the observation of others, or, if they were observed, would be regarded as of no possible moment, often supply the man who is in quest of posers with a pretty theme or an idea that he thinks possesses some "basal value."
When seated opposite to a lady in a railway carriage at the time of Queen Victoria's Diamond Jubilee, my attention was attracted to a brooch that she was wearing. It was in the form of a Maltese or Victoria Cross, and bore the letters of the word VICTORIA. The number and arrangement of the letters immediately gave me the suggestion for the puzzle which I now present.
The diagram, it will be seen, is composed of nine divisions. The puzzle is to place eight counters, bearing the letters of the word VICTORIA, exactly in the manner shown, and then slide one letter at a time from black to white and white to black alternately, until the word reads round in the same direction, only with the initial letter V on one of the black arms of the cross. At no time may two letters be in the same division. It is required to find the shortest method.
Leaping moves are, of course, not permitted. The first move must obviously be made with A, I, T, or R. Supposing you move T to the centre, the next counter played will be O or C, since I or R cannot be moved. There is something a little remarkable in the solution of this puzzle which I will explain.


Saturday, September 6, 2008

A Plantation Puzzle




A man had a square plantation of forty-nine trees, but, as will be seen by the omissions in the illustration, four trees were blown down and removed. He now wants to cut down all the remainder except ten trees, which are to be so left that they shall form five straight rows with four trees in every row. Which are the ten trees that he must leave?


Friday, September 5, 2008

The Eight Sticks

I have eight sticks, four of them being exactly half the length of the others. I lay every one of these on the table, so that they enclose three squares, all of the same size. How do I do it? There must be no loose ends hanging over.

Solution

Thursday, September 4, 2008

The Ball Problem




A stonemason was engaged the other day in cutting out a round ball for the purpose of some architectural decoration, when a smart schoolboy came upon the scene.
"Look here," said the mason, "you seem to be a sharp youngster, can you tell me this? If I placed this ball on the level ground, how many other balls of the same size could I lay around it (also on the ground) so that every ball should touch this one?"
The boy at once gave the correct answer, and then put this little question to the mason:—
"If the surface of that ball contained just as many square feet as its volume contained cubic feet, what would be the length of its diameter?"
The stonemason could not give an answer. Could you have replied correctly to the mason's and the boy's questions?


Wednesday, September 3, 2008

The Cardboard Box

This puzzle is not difficult, but it will be found entertaining to discover the simple rule for its solution. I have a rectangular cardboard box. The top has an area of 120 square inches, the side 96 square inches, and the end 80 square inches. What are the exact dimensions of the box?

Solution

Tuesday, September 2, 2008

The Christmas Pudding

"Speaking of Christmas puddings," said the host, as he glanced at the imposing delicacy at the other end of the table. "I am reminded of the fact that a friend gave me a new puzzle the other day respecting one. Here it is," he added, diving into his breast pocket.
"'Problem: To find the contents,' I suppose," said the Eton boy.
"No; the proof of that is in the eating. I will read you the conditions."



"'Cut the pudding into two parts, each of exactly the same size and shape, without touching any of the plums. The pudding is to be regarded as a flat disc, not as a sphere.'"
"Why should you regard a Christmas pudding as a disc? And why should any reasonable person ever wish to make such an accurate division?" asked the cynic.
"It is just a puzzle—a problem in dissection." All in turn had a look at the puzzle, but nobody succeeded in solving it. It is a little difficult unless you are acquainted with the principle involved in the making of such puddings, but easy enough when you know how it is done.

Monday, September 1, 2008

The Great Monad




Here is a symbol of tremendous antiquity which is worthy of notice. It is borne on the Korean ensign and merchant flag, and has been adopted as a trade sign by the Northern Pacific Railroad Company, though probably few are aware that it is the Great Monad, as shown in the sketch below. This sign is to the Chinaman what the cross is to the Christian. It is the sign of Deity and eternity, while the two parts into which the circle is divided are called the Yin and the Yan—the male and female forces of nature. A writer on the subject more than three thousand years ago is reported to have said in reference to it: "The illimitable produces the great extreme. The great extreme produces the two principles. The two principles produce the four quarters, and from the four quarters we develop the quadrature of the eight diagrams of Feuh-hi." I hope readers will not ask me to explain this, for I have not the slightest idea what it means. Yet I am persuaded that for ages the symbol has had occult and probably mathematical meanings for the esoteric student.
I will introduce the Monad in its elementary form. Here are three easy questions respecting this great symbol:—
(I.) Which has the greater area, the inner circle containing the Yin and the Yan, or the outer ring?
(II.) Divide the Yin and the Yan into four pieces of the same size and shape by one cut.
(III.) Divide the Yin and the Yan into four pieces of the same size, but different shape, by one straight cut.


Sunday, August 31, 2008

The Bun Puzzle




The three circles represent three buns, and it is simply required to show how these may be equally divided among four boys. The buns must be regarded as of equal thickness throughout and of equal thickness to each other. Of course, they must be cut into as few pieces as possible. To simplify it I will state the rather surprising fact that only five pieces are necessary, from which it will be seen that one boy gets his share in two pieces and the other three receive theirs in a single piece. I am aware that this statement "gives away" the puzzle, but it should not destroy its interest to those who like to discover the "reason why."


Saturday, August 30, 2008

The Artillerymen's Dilemma




"All cannon-balls are to be piled in square pyramids," was the order issued to the regiment. This was done. Then came the further order, "All pyramids are to contain a square number of balls." Whereupon the trouble arose. "It can't be done," said the major. "Look at this pyramid, for example; there are sixteen balls at the base, then nine, then four, then one at the top, making thirty balls in all. But there must be six more balls, or five fewer, to make a square number." "It must be done," insisted the general. "All you have to do is to put the right number of balls in your pyramids." "I've got it!" said a lieutenant, the mathematical genius of the regiment. "Lay the balls out singly." "Bosh!" exclaimed the general. "You can't pile one ball into a pyramid!" Is it really possible to obey both orders?

Friday, August 29, 2008

A Problem in Squares

We possess three square boards. The surface of the first contains five square feet more than the second, and the second contains five square feet more than the third. Can you give exact measurements for the sides of the boards? If you can solve this little puzzle, then try to find three squares in arithmetical progression, with a common difference of 7 and also of 13.

Solution

Thursday, August 28, 2008

Circling the Squares


The puzzle is to place a different number in each of the ten squares so that the sum of the squares of any two adjacent numbers shall be equal to the sum of the squares of the two numbers diametrically opposite to them. The four numbers placed, as examples, must stand as they are. The square of 16 is 256, and the square of 2 is 4. Add these together, and the result is 260. Also—the square of 14 is 196, and the square of 8 is 64. These together also make 260. Now, in precisely the same way, B and C should be equal to G and H (the sum will not necessarily be 260), A and K to F and E, H and I to C and D, and so on, with any two adjoining squares in the circle.
All you have to do is to fill in the remaining six numbers. Fractions are not allowed, and I shall show that no number need contain more than two figures.

Wednesday, August 27, 2008

The Leap-year Ladies

Last leap-year ladies lost no time in exercising the privilege of making proposals of marriage. If the figures that reached me from an occult source are correct, the following represents the state of affairs in this country.
A number of women proposed once each, of whom one-eighth were widows. In consequence, a number of men were to be married of whom one-eleventh were widowers. Of the proposals made to widowers, one-fifth were declined. All the widows were accepted. Thirty-five forty-fourths of the widows married bachelors. One thousand two hundred and twenty-one spinsters were declined by bachelors. The number of spinsters accepted by bachelors was seven times the number of widows accepted by bachelors. Those are all the particulars that I was able to obtain. Now, how many women proposed?

Solution

Tuesday, August 26, 2008

Academic Courtesies

In a certain mixed school, where a special feature was made of the inculcation of good manners, they had a curious rule on assembling every morning. There were twice as many girls as boys. Every girl made a bow to every other girl, to every boy, and to the teacher. Every boy made a bow to every other boy, to every girl, and to the teacher. In all there were nine hundred bows made in that model academy every morning. Now, can you say exactly how many boys there were in the school? If you are not very careful, you are likely to get a good deal out in your calculation.

Solution

Monday, August 25, 2008

Digital Division

It is another good puzzle so to arrange the nine digits (the nought excluded) into two groups so that one group when divided by the other produces a given number without remainder. For example, 1 3 4 5 8 divided by 6 7 2 9 gives 2. Can the reader find similar arrangements producing 3, 4, 5, 6, 7, 8, and 9 respectively? Also, can he find the pairs of smallest possible numbers in each case? Thus, 1 4 6 5 8 divided by 7 3 2 9 is just as correct for 2 as the other example we have given, but the numbers are higher.

Solution

Sunday, August 24, 2008

Odd and even Digits

The odd digits, 1, 3, 5, 7, and 9, add up 25, while the even figures, 2, 4, 6, and 8, only add up 20. Arrange these figures so that the odd ones and the even ones add up alike. Complex and improper fractions and recurring decimals are not allowed.

Solution

Monday, June 30, 2008

The Two Trains

I put this little question to a stationmaster, and his correct answer was so prompt that I am convinced there is no necessity to seek talented railway officials in America or elsewhere.
Two trains start at the same time, one from London to Liverpool, the other from Liverpool to London. If they arrive at their destinations one hour and four hours respectively after passing one another, how much faster is one train running than the other?

Solution

Sunday, June 29, 2008

A Time Puzzle

How many minutes is it until six o'clock if fifty minutes ago it was four times as many minutes past three o'clock?

Solution

Saturday, June 28, 2008

Concerning Tommy's Age

Tommy Smart was recently sent to a new school. On the first day of his arrival the teacher asked him his age, and this was his curious reply: "Well, you see, it is like this. At the time I was born—I forget the year—my only sister, Ann, happened to be just one-quarter the age of mother, and she is now one-third the age of father." "That's all very well," said the teacher, "but what I want is not the age of your sister Ann, but your own age." "I was just coming to that," Tommy answered; "I am just a quarter of mother's present age, and in four years' time I shall be a quarter the age of father. Isn't that funny?"
This was all the information that the teacher could get out of Tommy Smart. Could you have told, from these facts, what was his precise age? It is certainly a little puzzling.

Solution

Friday, June 27, 2008

Defective Observation

Our observation of little things is frequently defective, and our memories very liable to lapse. A certain judge recently remarked in a case that he had no recollection whatever of putting the wedding-ring on his wife's finger. Can you correctly answer these questions without having the coins in sight? On which side of a penny is the date given? Some people are so unobservant that, although they are handling the coin nearly every day of their lives, they are at a loss to answer this simple question. If I lay a penny flat on the table, how many other pennies can I place around it, every one also lying flat on the table, so that they all touch the first one? The geometrician will, of course, give the answer at once, and not need to make any experiment. He will also know that, since all circles are similar, the same answer will necessarily apply to any coin. The next question is a most interesting one to ask a company, each person writing down his answer on a slip of paper, so that no one shall be helped by the answers of others. What is the greatest number of three-penny-pieces that may be laid flat on the surface of a half-crown, so that no piece lies on another or overlaps the surface of the half-crown? It is amazing what a variety of different answers one gets to this question. Very few people will be found to give the correct number. Of course the answer must be given without looking at the coins.

Solution

Thursday, June 26, 2008

The Bicycle Thief

Here is a little tangle that is perpetually cropping up in various guises. A cyclist bought a bicycle for £15 and gave in payment a cheque for £25. The seller went to a neighbouring shopkeeper and got him to change the cheque for him, and the cyclist, having received his £10 change, mounted the machine and disappeared. The cheque proved to be valueless, and the salesman was requested by his neighbour to refund the amount he had received. To do this, he was compelled to borrow the £25 from a friend, as the cyclist forgot to leave his address, and could not be found. Now, as the bicycle cost the salesman £11, how much money did he lose altogether?

Solution

Wednesday, June 25, 2008

The Market Women

A number of market women sold their various products at a certain price per pound (different in every case), and each received the same amount—2s. 2½d. What is the greatest number of women there could have been? The price per pound in every case must be such as could be paid in current money.

Solution

Tuesday, June 24, 2008

Indiscriminate Charity

A charitable gentleman, on his way home one night, was appealed to by three needy persons in succession for assistance. To the first person he gave one penny more than half the money he had in his pocket; to the second person he gave twopence more than half the money he then had in his pocket; and to the third person he handed over threepence more than half of what he had left. On entering his house he had only one penny in his pocket. Now, can you say exactly how much money that gentleman had on him when he started for home?

Solution

Monday, June 23, 2008

Who was First?

Anderson, Biggs, and Carpenter were staying together at a place by the seaside. One day they went out in a boat and were a mile at sea when a rifle was fired on shore in their direction. Why or by whom the shot was fired fortunately does not concern us, as no information on these points is obtainable, but from the facts I picked up we can get material for a curious little puzzle for the novice.
It seems that Anderson only heard the report of the gun, Biggs only saw the smoke, and Carpenter merely saw the bullet strike the water near them. Now, the question arises: Which of them first knew of the discharge of the rifle?

Solution

Sunday, June 22, 2008

The Dovetailed Block


Here is a curious mechanical puzzle that was given to me some years ago, but I cannot say who first invented it. It consists of two solid blocks of wood securely dovetailed together. On the other two vertical sides that are not visible the appearance is precisely the same as on those shown. How were the pieces put together? When I published this little puzzle in a London newspaper I received (though they were unsolicited) quite a stack of models, in oak, in teak, in mahogany, rosewood, satinwood, elm, and deal; some half a foot in length, and others varying in size right down to a delicate little model about half an inch square. It seemed to create considerable interest.

Saturday, June 21, 2008

The Siberian Dungeons


The above is a trustworthy plan of a certain Russian prison in Siberia. All the cells are numbered, and the prisoners are numbered the same as the cells they occupy. The prison diet is so fattening that these political prisoners are in perpetual fear lest, should their pardon arrive, they might not be able to squeeze themselves through the narrow doorways and get out. And of course it would be an unreasonable thing to ask any government to pull down the walls of a prison just to liberate the prisoners, however innocent they might be. Therefore these men take all the healthy exercise they can in order to retard their increasing obesity, and one of their recreations will serve to furnish us with the following puzzle.
Show, in the fewest possible moves, how the sixteen men may form themselves into a magic square, so that the numbers on their backs shall add up the same in each of the four columns, four rows, and two diagonals without two prisoners having been at any time in the same cell together. I had better say, for the information of those who have not yet been made acquainted with these places, that it is a peculiarity of prisons that you are not allowed to go outside their walls. Any prisoner may go any distance that is possible in a single move.

Friday, June 20, 2008

Crossing the River Axe


Many years ago, in the days of the smuggler known as "Rob Roy of the West," a piratical band buried on the coast of South Devon a quantity of treasure which was, of course, abandoned by them in the usual inexplicable way. Some time afterwards its whereabouts was discovered by three countrymen, who visited the spot one night and divided the spoil between them, Giles taking treasure to the value of £800, Jasper £500 worth, and Timothy £300 worth. In returning they had to cross the river Axe at a point where they had left a small boat in readiness. Here, however, was a difficulty they had not anticipated. The boat would only carry two men, or one man and a sack, and they had so little confidence in one another that no person could be left alone on the land or in the boat with more than his share of the spoil, though two persons (being a check on each other) might be left with more than their shares. The puzzle is to show how they got over the river in the fewest possible crossings, taking their treasure with them. No tricks, such as ropes, "flying bridges," currents, swimming, or similar dodges, may be employed.

Thursday, June 19, 2008

Puss in the Corner


This variation of the last puzzle is also played by two persons. One puts a counter on No. 6, and the other puts one on No. 55, and they play alternately by removing the counter to any other number in a line. If your opponent moves at any time on to one of the lines you occupy, or even crosses one of your lines, you immediately capture him and win. We will take an illustrative game.
A moves from 55 to 52; B moves from 6 to 13; A advances to 23; B goes to 15; A retreats to 26; B retreats to 13; A advances to 21; B retreats to 2; A advances to 7; B goes to 3; A moves to 6; B must now go to 4; A establishes himself at 11, and B must be captured next move because he is compelled to cross a line on which A stands. Play this over and you will understand the game directly. Now, the puzzle part of the game is this: Which player should win, and how many moves are necessary?

Wednesday, June 18, 2008

Card Triangles

Here you pick out the nine cards, ace to nine of diamonds, and arrange them in the form of a triangle, exactly as shown in the illustration, so that the pips add up the same on the three sides. In the example given it will be seen that they sum to 20 on each side, but the particular number is of no importance so long as it is the same on all three sides. The puzzle is to find out in just how many different ways this can be done.
If you simply turn the cards round so that one of the other two sides is nearest to you this will not count as different, for the order will be the same. Also, if you make the 4, 9, 5 change places with the 7, 3, 8, and at the same time exchange the 1 and the 6, it will not be different. But if you only change the 1 and the 6 it will be different, because the order round the triangle is not the same. This explanation will prevent any doubt arising as to the conditions.



Tuesday, June 17, 2008

The Barrel Puzzle

The men in the illustration are disputing over the liquid contents of a barrel. What the particular liquid is it is impossible to say, for we are unable to look into the barrel; so we will call it water. One man says that the barrel is more than half full, while the other insists that it is not half full. What is their easiest way of settling the point? It is not necessary to use stick, string, or implement of any kind for measuring. I give this merely as one of the simplest possible examples of the value of ordinary sagacity in the solving of puzzles. What are apparently very difficult problems may frequently be solved in a similarly easy manner if we only use a little common sense.




Solution

Monday, June 16, 2008

An Amazing Dilemma

In a game of chess between Mr. Black and Mr. White, Black was in difficulties, and as usual was obliged to catch a train. So he proposed that White should complete the game in his absence on condition that no moves whatever should be made for Black, but only with the White pieces. Mr. White accepted, but to his dismay found it utterly impossible to win the game under such conditions. Try as he would, he could not checkmate his opponent. On which square did Mr. Black leave his king? The other pieces are in their proper positions in the diagram. White may leave Black in check as often as he likes, for it makes no difference, as he can never arrive at a checkmate position.


Sunday, June 15, 2008

The Kennal Puzzle

A man has twenty-five dog kennels all communicating with each other by doorways, as shown in the illustration. He wishes to arrange his twenty dogs so that they shall form a knight's string from dog No. 1 to dog No. 20, the bottom row of five kennels to be left empty, as at present. This is to be done by moving one dog at a time into a vacant kennel. The dogs are well trained to obedience, and may be trusted to remain in the kennels in which they are placed, except that if two are placed in the same kennel together they will fight it out to the death. How is the puzzle to be solved in the fewest possible moves without two dogs ever being together?

Solution is here

Saturday, June 14, 2008

St. George and the Dragon


Here is a little puzzle on a reduced chessboard of forty-nine squares. St. George wishes to kill the dragon. Killing dragons was a well-known pastime of his, and, being a knight, it was only natural that he should desire to perform the feat in a series of knight's moves. Can you show how, starting from that central square, he may visit once, and only once, every square of the board in a chain of chess knight's moves, and end by capturing the dragon on his last move? Of course a variety of different ways are open to him, so try to discover a route that forms some pretty design when you have marked each successive leap by a straight line from square to square.

Friday, June 13, 2008

The Lion and the Man

In a public place in Rome there once stood a prison divided into sixty-four cells, all open to the sky and all communicating with one another, as shown in the illustration. The sports that here took place were watched from a high tower. The favourite game was to place a Christian in one corner cell and a lion in the diagonally opposite corner and then leave them with all the inner doors open. The consequent effect was sometimes most laughable. On one occasion the man was given a sword. He was no coward, and was as anxious to find the lion as the lion undoubtedly was to find him.



The man visited every cell once and only once in the fewest possible straight lines until he reached the lion's cell. The lion, curiously enough, also visited every cell once and only once in the fewest possible straight lines until he finally reached the man's cell. They started together and went at the same speed; yet, although they occasionally got glimpses of one another, they never once met. The puzzle is to show the route that each happened to take.

Solution

Thursday, June 12, 2008

The Southern Cross


In the above illustration we have five Planets and eighty-one Fixed Stars, five of the latter being hidden by the Planets. It will be found that every Star, with the exception of the ten that have a black spot in their centres, is in a straight line, vertically, horizontally, or diagonally, with at least one of the Planets. The puzzle is so to rearrange the Planets that all the Stars shall be in line with one or more of them.
In rearranging the Planets, each of the five may be moved once in a straight line, in either of the three directions mentioned. They will, of course, obscure five other Stars in place of those at present covered.

Wednesday, June 11, 2008

The Bachet's Square

One of the oldest card puzzles is by Claude Caspar Bachet de Méziriac, first published, I believe, in the 1624 edition of his work. Rearrange the sixteen court cards (including the aces) in a square so that in no row of four cards, horizontal, vertical, or diagonal, shall be found two cards of the same suit or the same value. This in itself is easy enough, but a point of the puzzle is to find in how many different ways this may be done. The eminent French mathematician A. Labosne, in his modern edition of Bachet, gives the answer incorrectly. And yet the puzzle is really quite easy. Any arrangement produces seven more by turning the square round and reflecting it in a mirror. These are counted as different by Bachet.

Note "row of four cards," so that the only diagonals we have here to consider are the two long ones

Solution

Tuesday, June 10, 2008

The Chessboard Sentence



I once set myself the amusing task of so dissecting an ordinary chessboard into letters of the alphabet that they would form a complete sentence. It will be seen from the illustration that the pieces assembled give the sentence, "CUT THY LIFE," with the stops between. The ideal sentence would, of course, have only one full stop, but that I did not succeed in obtaining.
The sentence is an appeal to the transgressor to cut himself adrift from the evil life he is living. Can you fit these pieces together to form a perfect chessboard?

Solution

Monday, June 9, 2008

The Cross Target


In the illustration we have a somewhat curious target designed by an eccentric sharpshooter. His idea was that in order to score you must hit four circles in as many shots so that those four shots shall form a square. It will be seen by the results recorded on the target that two attempts have been successful. The first man hit the four circles at the top of the cross, and thus formed his square. The second man intended to hit the four in the bottom arm, but his second shot, on the left, went too high. This compelled him to complete his four in a different way than he intended. It will thus be seen that though it is immaterial which circle you hit at the first shot, the second shot may commit you to a definite procedure if you are to get your square. Now, the puzzle is to say in just how many different ways it is possible to form a square on the target with four shots.

Sunday, June 8, 2008

The Mouse-Trap Puzzle


This is a modern version, with a difference, of an old puzzle of the same name. Number twenty-one cards, 1, 2, 3, etc., up to 21, and place them in a circle in the particular order shown in the illustration. These cards represent mice. You start from any card, calling that card "one," and count, "one, two, three," etc., in a clockwise direction, and when your count agrees with the number on the card, you have made a "catch," and you remove the card. Then start at the next card, calling that "one," and try again to make another "catch." And so on. Supposing you start at 18, calling that card "one," your first "catch" will be 19. Remove 19 and your next "catch" is 10. Remove 10 and your next "catch" is 1. Remove the 1, and if you count up to 21 (you must never go beyond), you cannot make another "catch." Now, the ideal is to "catch" all the twenty-one mice, but this is not here possible, and if it were it would merely require twenty-one different trials, at the most, to succeed. But the reader may make any two cards change places before he begins. Thus, you can change the 6 with the 2, or the 7 with the 11, or any other pair. This can be done in several ways so as to enable you to "catch" all the twenty-one mice, if you then start at the right place. You may never pass over a "catch"; you must always remove the card and start afresh.

Solution

Saturday, June 7, 2008

The City Luncheons

Twelve men connected with a large firm in the City of London sit down to luncheon together every day in the same room. The tables are small ones that only accommodate two persons at the same time. Can you show how these twelve men may lunch together on eleven days in pairs, so that no two of them shall ever sit twice together? We will represent the men by the first twelve letters of the alphabet, and suppose the first day's pairing to be as follows—
(A B) (C D) (E F) (G H) (I J) (K L).
Then give any pairing you like for the next day, say—
(A C) (B D) (E G) (F H) (I K) (J L),
and so on, until you have completed your eleven lines, with no pair ever occurring twice. There are a good many different arrangements possible. Try to find one of them.

Solutions

Friday, June 6, 2008

The Motor-Car Tour

In the above diagram the circles represent towns and the lines good roads. In just how many different ways can a motorist, starting from London (marked with an L), make a tour of all these towns, visiting every town once, and only once, on a tour, and always coming back to London on the last ride? The exact reverse of any route is not counted as different.

Solution

Thursday, June 5, 2008

The Fifteen Turnings

Here is another queer travelling puzzle, the solution of which calls for ingenuity. In this case the traveller starts from the black town and wishes to go as far as possible while making only fifteen turnings and never going along the same road twice. The towns are supposed to be a mile apart. Supposing, for example, that he went straight to A, then straight to B, then to C, D, E, and F, you will then find that he has travelled thirty-seven miles in five turnings. Now, how far can he go in fifteen turnings?



Solution

Wednesday, June 4, 2008

The Exchange Puzzle

Here is a rather entertaining little puzzle with moving counters. You only need twelve counters—six of one colour, marked A, C, E, G, I, and K, and the other six marked B, D, F, H, J, and L. You first place them on the diagram, as shown in the illustration, and the puzzle is to get them into regular alphabetical order, as follows:—



A B C D
E F G H
I J K L


The moves are made by exchanges of opposite colours standing on the same line. Thus, G and J may exchange places, or F and A, but you cannot exchange G and C, or F and D, because in one case they are both white and in the other case both black. Can you bring about the required arrangement in seventeen exchanges?



It cannot be done in fewer moves. The puzzle is really much easier than it looks, if properly attacked.

Solution

Tuesday, June 3, 2008

The Motor-Garage Puzzle


The difficulties of the proprietor of a motor garage are converted into a little pastime of a kind that has a peculiar fascination. All you need is to make a simple plan or diagram on a sheet of paper or cardboard and number eight counters, 1 to 8. Then a whole family can enter into an amusing competition to find the best possible solution of the difficulty.
The illustration represents the plan of a motor garage, with accommodation for twelve cars. But the premises are so inconveniently restricted that the proprietor is often caused considerable perplexity. Suppose, for example, that the eight cars numbered 1 to 8 are in the positions shown, how are they to be shifted in the quickest possible way so that 1, 2, 3, and 4 shall change places with 5, 6, 7, and 8—that is, with the numbers still running from left to right, as at present, but the top row exchanged with the bottom row? What are the fewest possible moves?
One car moves at a time, and any distance counts as one move. To prevent misunderstanding, the stopping-places are marked in squares, and only one car can be in a square at the same time.

Monday, June 2, 2008

The Six Frogs


The six educated frogs in the illustration are trained to reverse their order, so that their numbers shall read 6, 5, 4, 3, 2, 1, with the blank square in its present position. They can jump to the next square (if vacant) or leap over one frog to the next square beyond (if vacant), just as we move in the game of draughts, and can go backwards or forwards at pleasure. Can you show how they perform their feat in the fewest possible moves? It is quite easy, so when you have done it add a seventh frog to the right and try again. Then add more frogs until you are able to give the shortest solution for any number. For it can always be done, with that single vacant square, no matter how many frogs there are.

Sunday, June 1, 2008

A new match Puzzle



In the illustration eighteen matches are shown arranged so that they enclose two spaces, one just twice as large as the other. Can you rearrange them (1) so as to enclose two four-sided spaces, one exactly three times as large as the other, and (2) so as to enclose two five-sided spaces, one exactly three times as large as the other? All the eighteen matches must be fairly used in each case; the two spaces must be quite detached, and there must be no loose ends or duplicated matches.

Saturday, May 31, 2008

The Garden Walls


A speculative country builder has a circular field, on which he has erected four cottages, as shown in the illustration. The field is surrounded by a brick wall, and the owner undertook to put up three other brick walls, so that the neighbours should not be overlooked by each other, but the four tenants insist that there shall be no favouritism, and that each shall have exactly the same length of wall space for his wall fruit trees. The puzzle is to show how the three walls may be built so that each tenant shall have the same area of ground, and precisely the same length of wall.
Of course, each garden must be entirely enclosed by its walls, and it must be possible to prove that each garden has exactly the same length of wall. If the puzzle is properly solved no figures are necessary.

Solution

Friday, May 30, 2008

How to Draw and Oval

Can you draw a perfect oval on a sheet of paper with one sweep of the compasses? It is one of the easiest things in the world when you know how.

Solution

Thursday, May 29, 2008

The Squares of Brocade



I happened to be paying a call at the house of a lady, when I took up from a table two lovely squares of brocade. They were beautiful specimens of Eastern workmanship—both of the same design, a delicate chequered pattern.
"Are they not exquisite?" said my friend. "They were brought to me by a cousin who has just returned from India. Now, I want you to give me a little assistance. You see, I have decided to join them together so as to make one large square cushion-cover. How should I do this so as to mutilate the material as little as possible? Of course I propose to make my cuts only along the lines that divide the little chequers."


I cut the two squares in the manner desired into four pieces that would fit together and form another larger square, taking care that the pattern should match properly, and when I had finished I noticed that two of the pieces were of exactly the same area; that is, each of the two contained the same number of chequers. Can you show how the cuts were made in accordance with these conditions?

Wednesday, May 28, 2008

The Potato Puzzles

Take a circular slice of potato, place it on the table, and see into how large a number of pieces you can divide it with six cuts of a knife. Of course you must not readjust the pieces or pile them after a cut. What is the greatest number of pieces you can make?



The illustration shows how to make sixteen pieces. This can, of course, be easily beaten.

Solution