It may be interesting to introduce here, though it is not strictly a puzzle, an ingenious method for making a paper box.
Take a square of stout paper and by successive foldings make all the creases indicated by the dotted lines in the illustration. Then cut away the eight little triangular pieces that are shaded, and cut through the paper along the dark lines. The second illustration shows the box half folded up, and the reader will have no difficulty in effecting its completion. Before folding up, the reader might cut out the circular piece indicated in the diagram, for a purpose I will now explain.
This box will be found to serve excellently for the production of vortex rings. These rings, which were discussed by Von Helmholtz in 1858, are most interesting, and the box (with the hole cut out) will produce them to perfection. Fill the box with tobacco smoke by blowing it gently through the hole. Now, if you hold it horizontally, and softly tap the side that is opposite to the hole, an immense number of perfect rings can be produced from one mouthful of smoke. It is best that there should be no currents of air in the room. People often do not realise that these rings are formed in the air when no smoke is used. The smoke only makes them visible. Now, one of these rings, if properly directed on its course, will travel across the room and put out the flame of a candle, and this feat is much more striking if you can manage to do it without the smoke. Of course, with a little practice, the rings may be blown from the mouth, but the box produces them in much greater perfection, and no skill whatever is required. Lord Kelvin propounded the theory that matter may consist of vortex rings in a fluid that fills all space, and by a development of the hypothesis he was able to explain chemical combination.
Solution
Wednesday, October 15, 2008
Tuesday, October 14, 2008
A Cutting-Out Puzzle
Here is a little cutting-out poser. I take a strip of paper, measuring five inches by one inch, and, by cutting it into five pieces, the parts fit together and form a square, as shown in the illustration. Now, it is quite an interesting puzzle to discover how we can do this in only four pieces.
Monday, October 13, 2008
Two Crosses from One
Cut a Greek cross into five pieces that will form two such crosses, both of the same size. The solution of this puzzle is very beautiful.
Solution
Solution
Sunday, October 12, 2008
The Five Brigands
The five Spanish brigands, Alfonso, Benito, Carlos, Diego, and Esteban, were counting their spoils after a raid, when it was found that they had captured altogether exactly 200 doubloons. One of the band pointed out that if Alfonso had twelve times as much, Benito three times as much, Carlos the same amount, Diego half as much, and Esteban one-third as much, they would still have altogether just 200 doubloons. How many doubloons had each?
There are a good many equally correct answers to this question. Here is one of them:
A 6 × 12 = 72
B 12 × 3 = 36
C 17 × 1 = 17
D 120 × ½ = 60
E 45 × 1/3 = 15
200 200
The puzzle is to discover exactly how many different answers there are, it being understood that every man had something and that there is to be no fractional money—only doubloons in every case.
This problem, worded somewhat differently, was propounded by Tartaglia (died 1559), and he flattered himself that he had found one solution; but a French mathematician of note (M.A. Labosne), in a recent work, says that his readers will be astonished when he assures them that there are 6,639 different correct answers to the question. Is this so? How many answers are there?
Solution
There are a good many equally correct answers to this question. Here is one of them:
A 6 × 12 = 72
B 12 × 3 = 36
C 17 × 1 = 17
D 120 × ½ = 60
E 45 × 1/3 = 15
200 200
The puzzle is to discover exactly how many different answers there are, it being understood that every man had something and that there is to be no fractional money—only doubloons in every case.
This problem, worded somewhat differently, was propounded by Tartaglia (died 1559), and he flattered himself that he had found one solution; but a French mathematician of note (M.A. Labosne), in a recent work, says that his readers will be astonished when he assures them that there are 6,639 different correct answers to the question. Is this so? How many answers are there?
Solution
Saturday, October 11, 2008
A Legal Difficulty
"A client of mine," said a lawyer, "was on the point of death when his wife was about to present him with a child. I drew up his will, in which he settled two-thirds of his estate upon his son (if it should happen to be a boy) and one-third on the mother. But if the child should be a girl, then two-thirds of the estate should go to the mother and one-third to the daughter. As a matter of fact, after his death twins were born—a boy and a girl. A very nice point then arose. How was the estate to be equitably divided among the three in the closest possible accordance with the spirit of the dead man's will?"
Solution
Solution
Friday, October 10, 2008
The Torn Number
I had the other day in my possession a label bearing the number 3 0 2 5 in large figures. This got accidentally torn in half, so that 3 0 was on one piece and 2 5 on the other, as shown on the illustration. On looking at these pieces I began to make a calculation, scarcely conscious of what I was doing, when I discovered this little peculiarity. If we add the 3 and the 2 5 together and square the sum we get as the result the complete original number on the label! Thus, 30 added to 25 is 55, and 55 multiplied by 55 is 3025. Curious, is it not? Now, the puzzle is to find another number, composed of four figures, all different, which may be divided in the middle and produce the same result.
Thursday, October 9, 2008
Painting the Lamp-Posts
Tim Murphy and Pat Donovan were engaged by the local authorities to paint the lamp-posts in a certain street. Tim, who was an early riser, arrived first on the job, and had painted three on the south side when Pat turned up and pointed out that Tim's contract was for the north side. So Tim started afresh on the north side and Pat continued on the south. When Pat had finished his side he went across the street and painted six posts for Tim, and then the job was finished. As there was an equal number of lamp-posts on each side of the street, the simple question is: Which man painted the more lamp-posts, and just how many more?
Solution
Solution
Wednesday, October 8, 2008
The Mystic Eleven
Can you find the largest possible number containing any nine of the ten digits (calling nought a digit) that can be divided by 11 without a remainder? Can you also find the smallest possible number produced in the same way that is divisible by 11? Here is an example, where the digit 5 has been omitted: 896743012. This number contains nine of the digits and is divisible by 11, but it is neither the largest nor the smallest number that will work.
Solution
Solution
Tuesday, October 7, 2008
Digital Multiplication
Here is another entertaining problem with the nine digits, the nought being excluded. Using each figure once, and only once, we can form two multiplication sums that have the same product, and this may be done in many ways. For example, 7x658 and 14x329 contain all the digits once, and the product in each case is the same—4,606. Now, it will be seen that the sum of the digits in the product is 16, which is neither the highest nor the lowest sum so obtainable. Can you find the solution of the problem that gives the lowest possible sum of digits in the common product? Also that which gives the highest possible sum?
Solution
Solution
Monday, October 6, 2008
Donkey Riding
During a visit to the seaside Tommy and Evangeline insisted on having a donkey race over the mile course on the sands. Mr. Dobson and some of his friends whom he had met on the beach acted as judges, but, as the donkeys were familiar acquaintances and declined to part company the whole way, a dead heat was unavoidable. However, the judges, being stationed at different points on the course, which was marked off in quarter-miles, noted the following results:—The first three-quarters were run in six and three-quarter minutes, the first half-mile took the same time as the second half, and the third quarter was run in exactly the same time as the last quarter. From these results Mr. Dobson amused himself in discovering just how long it took those two donkeys to run the whole mile. Can you give the answer?
Solution
Solution
Sunday, October 5, 2008
The Stop-Watch
We have here a stop-watch with three hands. The second hand, which travels once round the face in a minute, is the one with the little ring at its end near the centre. Our dial indicates the exact time when its owner stopped the watch. You will notice that the three hands are nearly equidistant. The hour and minute hands point to spots that are exactly a third of the circumference apart, but the second hand is a little too advanced. An exact equidistance for the three hands is not possible. Now, we want to know what the time will be when the three hands are next at exactly the same distances as shown from one another. Can you state the time?
Solution
Saturday, October 4, 2008
Heard on the Tube Railway
First Lady: "And was he related to you, dear?"
Second Lady: "Oh, yes. You see, that gentleman's mother was my mother's mother-in-law, but he is not on speaking terms with my papa."
First Lady: "Oh, indeed!" (But you could see that she was not much wiser.)
How was the gentleman related to the Second Lady?
Solution
Second Lady: "Oh, yes. You see, that gentleman's mother was my mother's mother-in-law, but he is not on speaking terms with my papa."
First Lady: "Oh, indeed!" (But you could see that she was not much wiser.)
How was the gentleman related to the Second Lady?
Solution
Friday, October 3, 2008
Mrs. Timpkins's Age
Edwin: "Do you know, when the Timpkinses married eighteen years ago Timpkins was three times as old as his wife, and to-day he is just twice as old as she?"
Angelina: "Then how old was Mrs. Timpkins on the wedding day?"
Can you answer Angelina's question?
Solution
Angelina: "Then how old was Mrs. Timpkins on the wedding day?"
Can you answer Angelina's question?
Solution
Thursday, October 2, 2008
A Puzzle in Reversals
Most people know that if you take any sum of money in pounds, shillings, and pence, in which the number of pounds (less than £12) exceeds that of the pence, reverse it (calling the pounds pence and the pence pounds), find the difference, then reverse and add this difference, the result is always £12, 18s. 11d. But if we omit the condition, "less than £12," and allow nought to represent shillings or pence—(1) What is the lowest amount to which the rule will not apply? (2) What is the highest amount to which it will apply? Of course, when reversing such a sum as £14, 15s. 3d. it may be written £3, 16s. 2d., which is the same as £3, 15s. 14d.
Solution
Solution
Wednesday, October 1, 2008
The Christmas-Boxes
Some years ago a man told me he had spent one hundred English silver coins in Christmas-boxes, giving every person the same amount, and it cost him exactly £1, 10s. 1d. Can you tell just how many persons received the present, and how he could have managed the distribution? That odd penny looks queer, but it is all right.
Solution
Solution
Subscribe to:
Posts (Atom)