Monday, August 31, 2009

The Chinese Chessboard

Into how large a number of different pieces may the chessboard be cut (by cuts along the lines only), no two pieces being exactly alike? Remember that the arrangement of black and white constitutes a difference. Thus, a single black square will be different from a single white square, a row of three containing two white squares will differ from a row of three containing two black, and so on. If two pieces cannot be placed on the table so as to be exactly alike, they count as different. And as the back of the board is plain, the pieces cannot be turned over.

Solution

Sunday, August 30, 2009

The Fifteen Dominoes

In this case we do not use the complete set of twenty-eight dominoes to be found in the ordinary box. We dispense with all those dominoes that have a five or a six on them and limit ourselves to the fifteen that remain, where the double-four is the highest.
In how many different ways may the fifteen dominoes be arranged in a straight line in accordance with the simple rule of the game that a number must always be placed against a similar number—that is, a four against a four, a blank against a blank, and so on? Left to right and right to left of the same arrangement are to be counted as two different ways.

Solution

Saturday, August 29, 2009

The Round Table

Seat the same n persons at a round table on

(n - 1)(n - 2)

2

occasions so that no person shall ever have the same two neighbours twice. This is, of course, equivalent to saying that every person must sit once, and once only, between every possible pair.

Friday, August 28, 2009

King Aurther's Knights

King Arthur sat at the Round Table on three successive evenings with his knights—Beleobus, Caradoc, Driam, Eric, Floll, and Galahad—but on no occasion did any person have as his neighbour one who had before sat next to him. On the first evening they sat in alphabetical order round the table. But afterwards King Arthur arranged the two next sittings so that he might have Beleobus as near to him as possible and Galahad as far away from him as could be managed. How did he seat the knights to the best advantage, remembering that rule that no knight may have the same neighbour twice?

Solution

Thursday, August 27, 2009

A Bank Holiday Puzzle

Two friends were spending their bank holiday on a cycling trip. Stopping for a rest at a village inn, they consulted a route map, which is represented in our illustration in an exceedingly simplified form, for the puzzle is interesting enough without all the original complexities. They started from the town in the top left-hand corner marked A. It will be seen that there are one hundred and twenty such towns, all connected by straight roads. Now they discovered that there are exactly 1,365 different routes by which they may reach their destination, always travelling either due south or due east. The puzzle is to discover which town is their destination.


Of course, if you find that there are more than 1,365 different routes to a town it cannot be the right one.

Solution

Wednesday, August 26, 2009

Visiting the Towns


A traveller, starting from town No. 1, wishes to visit every one of the towns once, and once only, going only by roads indicated by straight lines. How many different routes are there from which he can select? Of course, he must end his journey at No. 1, from which he started, and must take no notice of cross roads, but go straight from town to town. This is an absurdly easy puzzle, if you go the right way to work.

Tuesday, August 25, 2009

The Eccentric Cheesemonger


The cheesemonger depicted in the illustration is an inveterate puzzle lover. One of his favourite puzzles is the piling of cheeses in his warehouse, an amusement that he finds good exercise for the body as well as for the mind. He places sixteen cheeses on the floor in a straight row and then makes them into four piles, with four cheeses in every pile, by always passing a cheese over four others. If you use sixteen counters and number them in order from 1 to 16, then you may place 1 on 6, 11 on 1, 7 on 4, and so on, until there are four in every pile. It will be seen that it does not matter whether the four passed over are standing alone or piled; they count just the same, and you can always carry a cheese in either direction. There are a great many different ways of doing it in twelve moves, so it makes a good game of "patience" to try to solve it so that the four piles shall be left in different stipulated places. For example, try to leave the piles at the extreme ends of the row, on Nos. 1, 2, 15 and 16; this is quite easy. Then try to leave three piles together, on Nos. 13, 14, and 15. Then again play so that they shall be left on Nos. 3, 5, 12, and 14.

Monday, August 24, 2009

A Railway Muddle

The plan represents a portion of the line of the London, Clodville, and Mudford Railway Company. It is a single line with a loop. There is only room for eight wagons, or seven wagons and an engine, between B and C on either the left line or the right line of the loop. It happened that two goods trains (each consisting of an engine and sixteen wagons) got into the position shown in the illustration. It looked like a hopeless deadlock, and each engine-driver wanted the other to go back to the next station and take off nine wagons. But an ingenious stoker undertook to pass the trains and send them on their respective journeys with their engines properly in front. He also contrived to reverse the engines the fewest times possible. Could you have performed the feat? And how many times would you require to reverse the engines? A "reversal" means a change of direction, backward or forward. No rope-shunting, fly-shunting, or other trick is allowed. All the work must be done legitimately by the two engines. It is a simple but interesting puzzle if attempted with counters.

Solution

Sunday, August 23, 2009

Turks and Russians

This puzzle is on the lines of the Afridi problem published by me in Tit-Bits some years ago.
On an open level tract of country a party of Russian infantry, no two of whom were stationed at the same spot, were suddenly surprised by thirty-two Turks, who opened fire on the Russians from all directions. Each of the Turks simultaneously fired a bullet, and each bullet passed immediately over the heads of three Russian soldiers. As each of these bullets when fired killed a different man, the puzzle is to discover what is the smallest possible number of soldiers of which the Russian party could have consisted and what were the casualties on each side.

Solution

Saturday, August 22, 2009

Concerning Wheels


There are some curious facts concerning the movements of wheels that are apt to perplex the novice. For example: when a railway train is travelling from London to Crewe certain parts of the train at any given moment are actually moving from Crewe towards London. Can you indicate those parts? It seems absurd that parts of the same train can at any time travel in opposite directions, but such is the case.
In the accompanying illustration we have two wheels. The lower one is supposed to be fixed and the upper one running round it in the direction of the arrows. Now, how many times does the upper wheel turn on its own axis in making a complete revolution of the other wheel? Do not be in a hurry with your answer, or you are almost certain to be wrong. Experiment with two pennies on the table and the correct answer will surprise you, when you succeed in seeing it.

Solution

Friday, August 21, 2009

The Sheep-Fold

It is a curious fact that the answers always given to some of the best-known puzzles that appear in every little book of fireside recreations that has been published for the last fifty or a hundred years are either quite unsatisfactory or clearly wrong. Yet nobody ever seems to detect their faults. Here is an example:—A farmer had a pen made of fifty hurdles, capable of holding a hundred sheep only. Supposing he wanted to make it sufficiently large to hold double that number, how many additional hurdles must he have?

Solution

Thursday, August 20, 2009

Drawing a Spiral

If you hold the page horizontally and give it a quick rotary motion while looking at the centre of the spiral, it will appear to revolve. Perhaps a good many readers are acquainted with this little optical illusion. But the puzzle is to show how I was able to draw this spiral with so much exactitude without using anything but a pair of compasses and the sheet of paper on which the diagram was made. How would you proceed in such circumstances?



Solution

Wednesday, August 19, 2009

Mrs. Perkins's Quilt

It will be seen that in this case the square patchwork quilt is built up of 169 pieces. The puzzle is to find the smallest possible number of square portions of which the quilt could be composed and show how they might be joined together. Or, to put it the reverse way, divide the quilt into as few square portions as possible by merely cutting the stitches.