Wednesday, February 17, 2010

Queens and Bishop Puzzle

It will be seen that every square of the board is either occupied or attacked. The puzzle is to substitute a bishop for the rook on the same square, and then place the four queens on other squares so that every square shall again be either occupied or attacked.

Solution

Monday, January 11, 2010

Under the Veil



If the reader will examine the above diagram, he will see that I have so placed eight V's, eight E's, eight I's, and eight L's in the diagram that no letter is in line with a similar one horizontally, vertically, or diagonally. Thus, no V is in line with another V, no E with another E, and so on. There are a great many different ways of arranging the letters under this condition. The puzzle is to find an arrangement that produces the greatest possible number of four-letter words, reading upwards and downwards, backwards and forwards, or diagonally. All repetitions count as different words, and the five variations that may be used are: VEIL, VILE, LEVI, LIVE, and EVIL.

This will be made perfectly clear when I say that the above arrangement scores eight, because the top and bottom row both give VEIL; the second and seventh columns both give VEIL; and the two diagonals, starting from the L in the 5th row and E in the 8th row, both give LIVE and EVIL. There are therefore eight different readings of the words in all.

This difficult word puzzle is given as an example of the use of chessboard analysis in solving such things. Only a person who is familiar with the "Eight Queens" problem could hope to solve it.

Solution

Monday, August 31, 2009

The Chinese Chessboard

Into how large a number of different pieces may the chessboard be cut (by cuts along the lines only), no two pieces being exactly alike? Remember that the arrangement of black and white constitutes a difference. Thus, a single black square will be different from a single white square, a row of three containing two white squares will differ from a row of three containing two black, and so on. If two pieces cannot be placed on the table so as to be exactly alike, they count as different. And as the back of the board is plain, the pieces cannot be turned over.

Solution

Sunday, August 30, 2009

The Fifteen Dominoes

In this case we do not use the complete set of twenty-eight dominoes to be found in the ordinary box. We dispense with all those dominoes that have a five or a six on them and limit ourselves to the fifteen that remain, where the double-four is the highest.
In how many different ways may the fifteen dominoes be arranged in a straight line in accordance with the simple rule of the game that a number must always be placed against a similar number—that is, a four against a four, a blank against a blank, and so on? Left to right and right to left of the same arrangement are to be counted as two different ways.

Solution

Saturday, August 29, 2009

The Round Table

Seat the same n persons at a round table on

(n - 1)(n - 2)

2

occasions so that no person shall ever have the same two neighbours twice. This is, of course, equivalent to saying that every person must sit once, and once only, between every possible pair.

Friday, August 28, 2009

King Aurther's Knights

King Arthur sat at the Round Table on three successive evenings with his knights—Beleobus, Caradoc, Driam, Eric, Floll, and Galahad—but on no occasion did any person have as his neighbour one who had before sat next to him. On the first evening they sat in alphabetical order round the table. But afterwards King Arthur arranged the two next sittings so that he might have Beleobus as near to him as possible and Galahad as far away from him as could be managed. How did he seat the knights to the best advantage, remembering that rule that no knight may have the same neighbour twice?

Solution

Thursday, August 27, 2009

A Bank Holiday Puzzle

Two friends were spending their bank holiday on a cycling trip. Stopping for a rest at a village inn, they consulted a route map, which is represented in our illustration in an exceedingly simplified form, for the puzzle is interesting enough without all the original complexities. They started from the town in the top left-hand corner marked A. It will be seen that there are one hundred and twenty such towns, all connected by straight roads. Now they discovered that there are exactly 1,365 different routes by which they may reach their destination, always travelling either due south or due east. The puzzle is to discover which town is their destination.


Of course, if you find that there are more than 1,365 different routes to a town it cannot be the right one.

Solution